Acta Cryst. (1957). 10, 715

Partial order in the non-stoichiometric phase $\mathbf{T i}_{\mathbf{2}+\boldsymbol{x}} \mathbf{S}_{\mathbf{4}}(\mathbf{0} \cdot \mathbf{2}<\boldsymbol{x}<\mathbf{1})$. By A. D. WadsLey, Division of Industrial Chemistry, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia
(Received 25 June 1957)

The crystal structures of a number of phases in the range TiS- TiS_{3} were recently published by Hahn \& Harder (1956). They confirmed the existence of the non-stoichiometric 'sesquisulphide' first noted by Biltz, Ehrlich \& Meisel (1937), and proposed a structure for $\mathrm{Ti}_{3} \mathrm{~S}_{4}$ in the space group $\mathrm{Pb}_{3} / m m c$ similar to that of titanium phosphide (Schōnberg, 1954) but with the metal atoms randomly occupying only three-quarters of the octahedral sites available to them. A parallel examination of this particular phase had already been made in this laboratory as part of a more general study of the chalcogenides of the Group IV metals (McTaggart \& Wadsley, 1957). Whilst the structure found for $\mathrm{Ti}_{2.67} \mathrm{~S}_{4}$ (i.e. $\mathrm{Ti}_{2} \mathrm{~S}_{3}$) and for $\mathrm{Ti}_{3} \mathrm{~S}_{4}$ by the present writer was substantially similar to that reported by Hahn \& Harder, differences were noted which call for some comment.

The hexagonal lattice parameters of a series of compositions defining the phase limits, and given in Table 1,

Table 1. Crystallographic data

Compound	$a(\AA)$	c (\AA)	Density (g.cm. ${ }^{-3}$)	
			Obs.	Calc.
TiS_{2}	3.90	$5 \cdot 70$	$3 \cdot 15$	3.28*
$\mathrm{Ti}_{2 \cdot 22} \mathrm{~S}_{4}$	$3 \cdot 41{ }_{3}$	11.46	$3 \cdot 35$	$3 \cdot 37$
$\mathrm{Ti}_{2.67} \mathrm{~S}_{4}$	$3 \cdot 42_{6}$	11.41	$3 \cdot 64$	$3 \cdot 71$
$\mathrm{Ti}_{3} \mathrm{~S}_{4}$	$3 \cdot 44_{5}$	11.45	3.74	3.84

* Values for TiS_{2} taken from Hägg \& Schönberg (1954).
were determined from exposures in a Guinier-type focusing camera. The structure of $\mathrm{Ti}_{2 \cdot 67} \mathrm{~S}_{4}$ was found by powder diffraction techniques, the intensities being estimated visually from multiple films simultaneously exposed with copper radiation in a camera 14.4 cm . in diameter. The absent reflexions were for $h, h, \overline{2 h}, l$ with l odd, and for $h k \bar{\imath} l$ with l odd when $h-k=3 n$, and these were characteristic of several hexagonal space groups provided the atoms were in one-, two-, or fourfold point positions. Satisfactory agreement between observed and calculated F values (Table 3) was reached by trial and error, the discrepancy factor being $0 \cdot 16$. The structure is based upon the atomic coordinates in Table 2 for the space group $P_{6} m c$.

Table 2. Fractional atomic parameters for $\mathrm{Ti}_{2+x} \mathrm{~S}_{4}$ Space group $\mathrm{Pb}_{3} m c$

	No. of atoms occupying equivalent		
Atom	positions	Coordinates	z para-
Ti_{1}	2	$\frac{1}{3}, \frac{2}{3}, z_{1} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z_{1}$	$z_{1}=\frac{3}{4}$
Ti_{2}	x	$\frac{1}{3}, \frac{2}{3}, z_{2} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z_{2}$	$z_{2}=0$
$\mathrm{~S}_{1}$	2	$\frac{1}{3}, \frac{2}{3}, z_{3} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z_{3}$	$z_{3}=\frac{3}{8}$
$\mathrm{~S}_{2}$	2	$0,0, z_{4} ; 0,0, \frac{1}{2}+z_{4}$	$z_{4}=\frac{1}{8}$

The atomic arrangement is shown in Fig. 1 viewed down the a axis. It differs from that of Hahn \& Harder (1956) by the choice of space group, and a different origin

Table 3. Calculated and observed X-ray data

	$\sin ^{2} \theta$		$\|\boldsymbol{F}\|_{0}$	$\left.{ }^{-F}\right\|_{C}$
hkil	Calc.	Obs.		
0002	0.0182	0.0186	42	33
1010	$0 \cdot 0674$	$0 \cdot 0682$	22	21
1011	0.0720 \}	0.0730	48	\{ 41
0004	$0.0729\}$	0.0730	48	$\{7$
$10 \overline{1} 2$	$0 \cdot 0856$	$0 \cdot 0863$	91	112
$10 \overline{1} 3$	0.1084	$0 \cdot 1093$	119	145
$10 \overline{14}$	$0 \cdot 1403$	$0 \cdot 1409$	73	91
0006	$0 \cdot 1640$	0.1649	51	23
10 L 5	$0 \cdot 1813$	$0 \cdot 1823$	110	129
$11 \overline{2} 0$	0.2021	$0 \cdot 2032$	178	157
$11 \overline{2} 2$	$0 \cdot 2203$	$0 \cdot 2214$	68	52
1016	0.2314	0.2324	87	88
$20 \overline{2} 1$	0.2741	0.2753	55	$\{69$
$11 \overline{2} 4$	$0.2750\}$	0.2753	55	$\{14$
2022	0.2877	0.2890	80	82
1017	$0 \cdot 2906$ \}	$0 \cdot 2928$	126	$\{26$
0008	$0.2916\}$	$0 \cdot 2928$	126	$\{80$
$202 \overline{3}$	$0 \cdot 3105$	$0 \cdot 3119$	107	94
$202 \overline{4}$	$0 \cdot 3424$	$0 \cdot 3439$	72	67
$11 \overline{2} 6$	$0 \cdot 3661$	$0 \cdot 3679$	74	41
$20 \overline{2} 5$	$0 \cdot 3834$	$0 \cdot 3853$	91	82
$20 \overline{2} 6$	0.4335 \}	0.4353	69	$\{71$
1019	$0.4364\}$	$0 \cdot 4353$	69	$\{22$
$21 \overline{3} 1$	$0 \cdot 4762$	$0 \cdot 4760$	43	30
$21 \overline{3} 2$	0.4898	$0 \cdot 4906$	77	95
2027	0.4927 \}	0.4948	203	\{ 54
$11 \overline{2} 8$	0.4937 \}	$0 \cdot 4948$	203	$\{157$
$21 \overline{3} 3$	0.5126	0.5143	126	122
1,0,1,10	$0 \cdot 5230$	$0 \cdot 5225$	63	65
$21 \overline{3} 4$	$0 \cdot 5445$	$0 \cdot 5455$	69	77
$21 \overline{3} 5$	$0 \cdot 5855$	$0 \cdot 5868$	113	112
$30 \overline{3} 0$	$0 \cdot 6063$	$0 \cdot 6078$	137	99
1,0, $\overline{1}, \underline{1} 1$	$0 \cdot 6187$	$0 \cdot 6187$	63	78
$21 \overline{3} 6$	$0 \cdot 6356$	$0 \cdot 6368$	75	81
0,0,0,12	$0 \cdot 6561$ \}	$0 \cdot 6574$	38	$\{4$
1,1, $\overline{2}, 10$	$0 \cdot 6577$ \}	0.6574	38	$\{31$
1,0,1,12	$0 \cdot 7235$	$0 \cdot 7228$	44	46
$22 \overline{4} 0$	$0 \cdot 8084$	$0 \cdot 8091$	105	85
$30 \overline{3} 8$	0.8979	0.8979	127	116
$31 \overline{4} 3$	$0 \cdot 9168$	$0 \cdot 9167$	73	88

results from the loss of the centre of symmetry. Better agreement was reached in the present instance, however, by postulating alternate filled and partly occupied sheets of metal atoms, rather than by assuming that the metals were statistically distributed over both sites with a small adjustment of the z parameter.

The sulphur atoms for this structure are in alternate hexagonal and cubic close packing, so that the filled Ti-S layers are grouped together as in the $C 27$ structure type. The supernumerary metal atoms find another set of octahedral sites between adjacent layers and increasing numbers may be admitted until half filled. This corresponds to $\mathrm{Ti}_{3} \mathrm{~S}_{4}$, which is the limiting composition. No evidence was found for superlattice reflexions corresponding to a multiple a axis, and the metal atoms and vacancies in the defective sheets are not ordered as in $\mathrm{Cr}_{2} \mathrm{~S}_{3}$ (Jellinek, 1955).

Fig. 1. The structure of $\mathrm{Ti}_{2+x} \mathrm{~S}_{4}$ viewed down the a axis. Sulphur atoms are drawn as larger circles, completely filled Ti_{1} sites as small black circles, and partly occupied Ti sites as crosses. The unit cell is drawn in projection with broken lines.

The titanium atoms are each distant $2 \cdot 45 \AA$ from six sulphurs at the corners of a nearly regular octahedron, and have an additional metal $2 \cdot 86 \AA$ away as a seventh
neighbour through the centre of an octahedral face. In each octahedron there are six S-S distances of $3 \cdot 43 \AA$ (the a axis length) and six of $\mathbf{3} \cdot 48 \AA$. The $\mathrm{Ti}-\mathrm{Ti}$ distance in metallic titanium is $2.90 \AA$, and it is possible that some form of metal-to-metal bonding exists between adjacent octahedra sharing a face parallel to (0001). The two sulphur atoms have different environments, S_{1} is at the centre of a trigonal prism of titanium atoms, whilst $\mathrm{S}_{\mathbf{2}}$ is at the centre of an octahedron.

Many of the sesqui-selenides and -tellurides of the transition metals may perhaps be regarded as the 'averaged mean' of the closely related $C 6$ and $B 8$ structures. TiS_{2} has the $C 6$ arrangement, whilst in the high-temperature form of TiS the $B 8$ grouping is modified by regular stacking disorders (Hahn \& Harder, 1956). The nonstoichiometric titanium 'sesquisulphide' therefore represents a transitional or intermediate structure between the two.

The writer desires to thank Mr F. K. McTaggart for kindly placing the specimens at his disposal.

References

Biltz, W., Ehrlich, P. \& Meisel, K. (1937). Z. anorg. Chem. 234, 97.
Hägg, G. \& Schönberg, N. (1954). Ark. Kemi, 7, 40, 371.

Hafn, H. \& Harder, B. (1956). Z. anorg. Chem. 288, 241.

Jellinek, F. (1955). Proc. K. Ned. Akad. Wet. B, 58, 213.

McTaggart, F. K. \& Wadsley, A. D. (1957). To be published.
Schönberg, N. (1954). Acta Chem. Scand. 8, 226.

Lattice parameters of cold-worked Cu-Zn-Ga alloys. By L. Castelliz, C. S. Barrett and T. B. Massalski,* Institute for the Study of Metals, University of Chicago, Chicago, Illinois, U.S.A.
(Received 5 June 1957)

Massalski \& Barrett (1957) have recently shown that ternary $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ga}$ alloys with the body-centered cubic structure, in the region of the equilibrium diagram where this high-temperature structure can be retained by a rapid quench, can be subsequently transformed by cold working.

Three such alloys, falling along the line of constant valence-electron:atom ratio ($e / a=1 \cdot 476$), have been subjected to cold work after quenching from the b.c.c. region, and the lattice parameters of the transformation structure are reported in this note.

The alloys were obtained from materials of 99.98 $\mathbf{9 9 . 9 9} \%$ purity, cast in 'Vycor' tubing, homogenized at

[^0]Table 1. Lattice parameters

	Composition (atomic \%)			Lattice Alloy*
	Cu	Zn	Ga	
parameter (\AA)				
1 Ga	54.9	42.5	$2 \cdot 6$	3.730 ± 0.002
2 Ga	57.4	37.5	$5 \cdot 1$	3.717 ± 0.002
$D 5$	65.07	23.67	11.26	3.705 ± 0.002

* Alloy designations are the same as those used by Massalski \& Barrett (1957).
$800^{\circ} \mathrm{C}$. and quenched in brine. Their composition is given in Table 1. X-ray patterns were obtained with monochromatized $\mathrm{Cu} K \alpha$ radiation in a G. E. X-ray diffraction unit. After filing at room temperature, and immediate X-ray exposure, lines of a transformation structure were

[^0]: * Presently at the Department of Physical Metallurgy, The University, Birmingham 15, England.

